
Building SciPy kernels with Pythran

Serge Guelton - Pythran main dev, Namek
Ralf Gommers - SciPy maintainer, Quansight Labs

14 July 2021

SciPy Pythran

Why we embarked on this journey

SciPy contains a lot of algorithmic code. It needs to be fast.
Existing approaches in SciPy were:

● Python: for the glue, and non critical parts
● Cython: for critical parts
● Fortran 77: for very old critical parts
● C & C++: for ultra critical parts :-)

Our goal: make it easier to write fast SciPy kernels!

The Pythran approach

Keep input code portable and high-level:

● takes pure Python code as input
● understands NumPy high-level constructs
● delivers performance by transpiling to C++

But still:

● efficient explicit looping in Python
● without any runtime dependencies

A typical Pythran kernel for SciPy
#pythran export _max_len_seq_inner(intp[], int8[], int, int, int8[])
def _max_len_seq_inner(taps, state, nbits, length, seq):
 n_taps = taps.shape[0]
 idx = 0
 for i in range(length):
 feedback = state[idx]
 seq[i] = feedback
 for ti in range(n_taps):
 feedback ^= state[(taps[ti] + idx) % nbits]
 state[idx] = feedback
 idx = (idx + 1) % nbits
 return np.roll(state, -idx, axis=0)

Understands NumPy function calls
⇖

Explicit indexing

Explicit looping⇐

⇖

⇙

Works in a Jupyter notebook

Easy build system integration
from distutils.core import setup
from pythran.dist import PythranExtension, PythranBuildExt

setup(...,
 ext_modules=[PythranExtension("mymodule", ["mymodule.py"])],
 cmdclass={"build_ext": PythranBuildExt})

Or precompile to C++ to use with any build system:

$ pythran -E mykernel.py -o mykernel.cpp

Isn’t Cython enough?

Cython is a great tool

● incremental conversion / mixed mode
● great for gluing existing native code/library with Python
● good portability, no runtime requirements

However, keeping in mind our “easier to write” goal:

● still has a non-negligible learning curve
● tends to be closer to C than Python when performance matters

Then what about Numba?

Numba is a great tool

● Just-in-Time compilation
● GPU support
● pure Python syntax

However:

● It has more runtime dependencies
● tends to require lower-level programming for best performance

Comparing Cython, Numba & Pythran
Cython Numba Pythran

Portability ++ + ++

Runtime dependency ++ -- ++

Maturity ++ + +

Maintenance status 0 + +

Features ++ + 0

Ease of use -- ++ +

Debugging & optimization 0 + 0

Size of binaries - ++ +

For all tools: performance excellent, bus factor is ~ 1-2

When do I use which tool?

Our advice:

● For higher-level, pure Python packages: use Numba
● If you have any compiled code in your package:

○ Use Pythran for standalone kernels
○ Use Cython for binding C/C++ code, and in case you need to

interact with the Python or NumPy C API

SciPy build/run-time dependencies

Current Pythran usage in SciPy

One large extension: RBFInterpolator

Several smaller extensions:

 $ git grep -l '#pythran'
 scipy/optimize/_group_columns.py
 scipy/signal/_max_len_seq_inner.py
 scipy/signal/_spectral.py
 scipy/stats/_hypotests_pythran.py

More PRs in progress

GSoC student - Xingyu Liu

Xingyu is going through SciPy's code base, looking for kernels to
benchmark and accelerate:

● stats.binned_statistic_dd: 2-30x speedup
● stats.somersd: 4-20x speedup
● spatial.SphericalVoronoi.sort_vertices_of_regions: 3x speedup

With more to come; read the blog of her journey at
https://blogs.python-gsoc.org/en/xingyu-lius-blog/

https://blogs.python-gsoc.org/en/xingyu-lius-blog/

Benefits for SciPy

Key benefit: easiest way to write fast kernels

● Developer experience about as good as with Numba, accessible
to almost every contributor

● It's fast - typically >= Cython, even without SIMD
● Produced binaries are much smaller than those from Cython
● Pythran itself is easy to contribute to, and has a responsive

maintainer
● Build system integration is easy(-ish)

Pythran limitations

There are still gaps in functionality, not all of NumPy is covered:

● numpy.random
● APIs with too much “dynamic behaviour” (e.g., keepdims keyword)
● There is no escape hatch - if it’s not supported, it must be added

to Pythran itself first
● No threading in SciPy. Pythran can use OpenMP, but this is

forbidden in SciPy (only custom thread pools allowed).
● Extra constraint on Windows: must build with clang-cl

Integration status

Currently Pythran is:

● enabled by default in the SciPy build
● Still an optional dependency (to disable: export SCIPY_USE_PYTHRAN=0)

Lessons from the recent SciPy 1.7.0 release:

● A small portability issue on AIX (already resolved)
● Status with PyPy unclear (PyPy + SciPy has other issues, so can’t test)
● Other than that, mostly smooth sailing

Initial integration required two Pythran releases to fix some build issues

Conclusions

SciPy contributors like Pythran! “This is very elegant”, “Surprised it’s that fast”

Initial goal achieved! Pythran is indeed an easier way to write fast kernels

The journey continues! Pythran will likely become a hard build-time
 dependency for or after SciPy 1.8.0

Bonus question: can we combine Pythran with CuPy's Python-to-CUDA JIT?
It emits C++ code too, so we could get fast CPU + GPU code like that.

